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COMPUTATION  OF  SCALAR  FAR-FIELD  PATTERNS  OF 
T 

LARGE-APERTURE  ANTENNAS 

by Thomas A .  O'Malley 

Lewis  Research  Center 

SUMMARY 

In computer  programs  used  for  evaluating the performance of high-gain antennas, 
efficient  numerical methods for calculating  the  far-field  patterns  must be used  since 
the majority of computer  time and storage  requirements may be  attributed to this 
phase of the  program. The numerical method most  frequently  used is the Fast  Fourier 
Transform  (FFT), which computes  the far field as the Fourier  transform of the  field 
distribution in the  antenna  aperture. This report  describes a new numerical method 
that in many applications is superior  to  the  FFT  in  terms of reducing  computer  time 
and storage  requirements. 

I 
I 

I 

In the new method, the  arbitrarily  specified  field in the  aperture is represented by 
a Fourier  series expansion.  The far  field is obtained by evaluating a double integral 
where  the  integrand  contains  the  aperture function. When the  Fourier  series expres- 
sion is substituted  into  the  integrand,  the  integral  can be evaluated in closed  form. 

The new method requires less computer  storage than the  FFT method. Which of 
the two methods requires less computer  time depends on the  number and location of 
far-field points. If the  application  requires  far-field points only in  the  principal  planes 
of the  pattern,  the new method is generally  faster. If the application  requires a  full 
rectangular  array of far-field points, the  FFT is generally  faster. A significant ad- 

- vantage of the new method is the  complete  flexibility  in  choosing  the  number and loca- 
tion of far-field points. If the  calculation of the  field in the  aperture is time consum- 
ing, the  number of aperture  grid points required  becomes an important  consideration. 
The number of aperture  grid  points  required is approximately  the  same  for  the two 
methods. 



INTRODUCTION 

Reflector  antennas  and  lens  antennas whose dimensions are large  compared  to a 
wavelength are used  extensively in applications requiring high gain. To determine  the 
performance  characteristics of these  antennas,  accurate  calculation of the antenna 
pattern  in  the  far  field is required. One method of calculating  the  far-field  pattern of J 

such antennas is the  aperture-field method (ref. 1). In this method, the  field  vectors 
E  and E are specified  in  a  planar  aperture  in  the  vicinity of the antenna.  The far L 

field  can be obtained from  vector  diffraction  equations involving integration  over  the 
aperture.  These  vector  equations a re  complex and require  considerable computational 
effort. In many antennas the field  over  the  aperture is almost  completely  linearly po- 
larized. Only a small  fraction of the  energy is in  the  cross-polarization component of 
the  field. By neglecting  the  cross-polarization components, the  problem can  be re- 
duced to a scalar diffraction  problem, which requires  considerably  less computational 
effort. 

I 

- 
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Scalar  diffraction  theory can  be  used to show that  the far field is the two- 
dimensional Fourier  transform of the  field  distribution  in  the  aperture of the antenna 
(ref. 1). In computer  programs  used  for  evaluating antenna performance,  efficient 
numerical methods for calculating  the  two-dimensional Fourier  transform must  be 
used  since  the  majority of computer  time  and  storage  requirements may be  attributed 
to  this  phase of the program. The  most widely used method for  calculating  the far 
field is the Fast Fourier  Transform  (FFT), which, a s  its name  implies, is consider- 
ably faster than previously  used methods (ref. 2). 

This report  presents a new numerical method for calculating  from  scalar  diffrac- 
tion theory  the  far-field  patterns of high-gain antennas.  The method evaluates  the  far- 
field  pattern as the  two-dimensional Fourier  transform of an arbitrarily  specified  field 
distribution  in  the antenna aperture. It is shown to  be  superior  to  the Fast Fourier 
Transform  in many applications. 

The new numerical method is described  in  detail. A brief  discussion of the  Fast 
Fourier  Transform follows. A comparison of the two numerical methods for  three 
common aperture  distributions is then given. Criteria  for  determining which of the 
two numerical methods is superior  in a given application a re  developed. i 

DESCRIPTION OF NEW  NUMERICAL  METHOD 

In this new numerical method, we assume  that the antenna aperture lies in  the x-y 
plane (fig. 1). In nearly all cases of interest,  the  aperture is either  elliptical or cir- 
cular.  Let x be  the  vector  from  the  center of the  aperture  to a far-field point. Let 
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a be  the  angle between the  z-axis and the  projection of into  the x-z plane, and let 
p be  the  angle between the  z-axis  and  the  projection of x into  the y-z plane. Let the 
coordinates of a point in  the  aperture  be x, y. The  field  over  the  aperture will be 
designated by F(x, y). A(x, y) will be the  amplitude  distribution,  and q(x, y) will be 
the  phase  distribution, so that 

7 
I 

W’ 
The far field will 
bY 

where  the  integration is over  the  aperture A and h is the wavelength. Let us define 

I 
Equation (2) then  becomes 

Let us define the function u(x, y) as 

u(x, y) = F(xy y) inside A (6) 

u(x, y) = 0 outside A (7) 

1 Then equation (5) becomes 
4 



Fourier  Series  Representation of Aperture Illumination 

In the  numerical method developed herein,  the aperture illumination  function 
F(x, y) is represented by a Fourier series expansion. When the  Fourier series expres- 
sion is substituted into equation (2), the  integral  for  the far field  can be evaluated  in 
closed  form. 

The aperture is assumed  to  be  elliptical  in shape.  The elliptical  aperture  includes 
the circular aperture as a special  case.  Let us consider  an  extension of the  aperture 
illumination  function  to a rectangular  region  enclosing  the  elliptical region, as in fig- 
ure 2. The  enclosing  rectangle will be called  the  Fourier  rectangle. The semimajor 
and semiminor axes of the  elliptical  aperture are a and b, respectively.  The semi- 
length and semiwidth of the  Fourier  rectangle are c  and d, respectively. On this 
rectangle  the  aperture  illumination  can  be  approximated by a Fourier  series SM(x, y) 
of the  form 

M M  

The Fourier  coefficients crs a r e  given by 

We assume  that  the  aperture  illumination is specified on a set of grid points within the 
Fourier  rectangle. We further  assume  that  the  grid  points  form a (2L + 1)-by-(2L + 1) 
array of equally spaced points, where L is some  integer.  The  grid points (3, y.) are 
given by 

3 

x. = -c +- 2ci i = O ,  . . ., 2L 
2L + 1 1 

To evaluate  the Fourier coefficients  in equation (lo), we replace  the double integral by 
the following double summation: 

4 



9 To calculate  the crs in  equation (13), one may, of course,  evaluate  the  summations 
directly.  Instead of doing this, we use a more  efficient  algorithm  devised by Goetzel. 
For  details of the  algorithm, see reference 4. 

The  values of c and  d and the method of extending the aperture illumination 
function  outside the  elliptical  aperture are chosen so as  to obtain a good Fourier series 
approximation within the  elliptical aperture. For  grid  points  outside  the  elliptical 
aperture, a good approximation is not required  because  the  far-field  pattern is ob- 

~ tained by evaluating  an  integral  over  the  aperture only. 
The Fourier series approximation  SM(x, y) has  the  periodicity  property  that 

SM(c, y) = SM(-cy y) for all y  and SM(x, d) = SM(x, -d) for all x. In general,  the 
aperture  illumination function  does not have  periodicity  properties. Thus, if c = a 

I 

I 
! and  d = by  the Fourier  series approximation may be  poor in the vicinity of the points 

! figure 3, which is a plot of the  imaginary  part of the  aperture function and its Fourier 
(a, 0 ) ,  (-a, 0 ) ,  (0, b), and (0 ,  -b). As an  example of this poor  approximation, consider 

I series representation a s  a  function of x, with y set equal  to 0. The  aperture function 
is 

I 

In figure 3, a = b = c = d = 1, and M = 4. It is clear  from  figure 3 that  the approxima- 
tion is poor at x = &a. Figure 4 is the  same plot but  with c = 1.1 a  and  d = 1.1 b. 
The Fourier  series approximation at x = &a is significantly  better.  Furthermore, 
the approximation is significantly  better throughout the  entire  interval.  Numerical 
tests suggest  that  the  ratio of c to a and the  ratio of d to b should be between 1.05 
and 1.10  to obtain good approximation throughout the  entire  aperture. 

The method of extending the  aperture function  outside the  aperture should be done 
such  that  the function has  the  same  periodicity  properties as its Fourier series repre- 
sentation,  that is, F(c, y) = F(-c, y) for all y and F(x, d) = F(x, -d) for  all x. The 
method used is illustrated  in  figure 5. Let y be  fixed at y = y. and consider  the row 
of grid  points (xi, y.), i = 0, . . . , 2L + 1. For some  value of i, let us  say i = il, the 
grid point (xi1,  y.) lies  just  inside  the  aperture  in  the second  quadrant. For Some 
value of i, let US say i = i2, the  grid point (xi2,  yj) lies just  inside  the  aperture in the 

3 
3 

3 
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The  function F(x, y.) is extended by two linear  segments: one  extending from (x,, yj) 
to (xil, yj),  and the  other extending from (xi2, yj) to ( x ~ ~ + ~ ,  yj), as shown in figure 5. t 
These  extensions are performed  for  all  such rows of grid points.  The same  procedure 
is then  used to extend all columns of grid  points. 3 

J 

Evaluation of Diffraction  Integral 

Substituting  the Fourier series representation of F(x, y) into equation (2), we ob- 
tain 

Combining  equations (16) and (17), we obtain 

where z " , ~  is given by 

The  computer  time  required  to  evaluate equation (18) is reduced by prestoring the 
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function f(x) = J,(&)/! for a set of values of x. After zrs is calculated by equa- 
tion (19), the  expression J1(zrs)/zrs is evaluated by linear  interpolation on the table. 
Since the far field is expressed as a sum of Bessel functions, this numerical method 
will be  called  the  Bessel Function method, or simply  the  BF method. 

2 

FAST  FOURIER  TRANSFORM 

The Fast  Fourier  Transform  (FFT),  as its name  implies, is a numerical method 
for  calculating  Fourier  transforms  that is computationally faster than  previously  used 
methods. Since the far field can be  expressed as the two-dimensional Fourier  trans- 
form of the  aperture illumination, the  FFT can be used  to  perform  the computation. 
For  details of the  FFT  algorithm, see reference 5. We discuss  briefly  here only 
those  features of the FFT needed to make  a  comparison between the FFT method and 
the  BF method. 

The FFT  requires  that  the  aperture  illumination  be  specified on a rectangular 
i array of  N-by-N points. A s  in the  discussion of the BF method, we call  this  rectangle 
~ the  Fourier  rectangle.  From  figure 6, the  Fourier  rectangle  has a  semilength of c 

and a semiwidth of  d. Unlike the  BF method, the FF.T method requires  that  the  aper- 
ture illumination be set to  zero  for  those points that are  outside  the  aperture. Also 

j unlike the  BF method, the  Fourier  rectangle is large compared to  the  aperture. The 
' reason for this is that  the  ratio of c to a (or d to b) determines  the  number of 

points per  side lobe  calculated by the  FFT. Approximately c/a  (or d/b) points per 
side lobe will be  calculated. 

The number of grid  points  lying within the  aperture  determines  the  number of 
I 

lobes  calculated by the  FFT. If the  number of grid points on the  x-axis, extending 
' from x = -a  to x = a, is k, the  FFT  calculates  approximately k  lobes. Also the 

number of grid points  lying within the  aperture  determines  the  accuracy of the  far- 
field calculation.  The accuracy  increases as k increases. 

The Fourier-rectangle  array of  N-by-N points has  the  restriction  that N must 
be  a  power of 2. For  most applications, N will be  either 64, 128, or 256. Another 
restriction is that  the  number of far-field (output) points  must also.form an N-by-N 
array,  where N is the  same as for the Fourier-rectangle (input) array. 

\ 

The computer  time  for  calculating  the  FFT is proportional  to N log2N. Previ- 
ously  used  methods  had  computer  times  proportional to N . For  large values of N, 
the  savings in computer  time by using  the  FFT is substantial. 

2 
3 
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COMPARISON OF  BF METHOD  WITH FFT METHOD 

For  either  the  FFT method o r  the BF method, the e r ro r  at a far-field point is de- 
fined as the  difference between the computed and true  values  at  that point, divided by 
the peak  value of the true pattern. By true value, we mean the  exact  value of the 
scalar diffraction  integral of equation (2). The error  criterion  used in  this  report is 
that  the  error cannot  exceed 0.01 at any far-field point. This  criterion will not  yield 
good accuracy on a decibel  scale  for  side  lobes far removed from  the  main lobe. How- 
ever,  far-out  side  lobes are not accurately  calculated  from  the  scalar  diffraction inte- 
gral  (ref. 6 ) .  Vector  diffraction  integration is required. The error  criterion of 0.01 
is acceptable  for  those  portions of the far  field  that a r e  accurately  described by the 
scalar diffraction  integral. 

8 

d 

For  the  FFT method, the  accuracy of computing the  scalar diffraction  integral in- 
creases  as the  number of lobes  included  in the  calculation  increases. To satisfy  the 
accuracy  criterion of 0.01,  approximately 16 lobes  have  to be included. And to obtain 
visual  resolution of the  side  lobes,  approximately 8  points per  side lobe a re  needed. 
Thus,  a 128-by-128 array of points is required. 

For  the  BF method, the  upper limit M in the  far-field  summation  has  to  be 4 to 
satisfy  the  error  criterion of 0.01. For  some  aperture  illuminations, a smaller value 
of M would suffice, as discussed  later  in  this  section.  For  calculating  the  Fourier 
coefficients  crs, a 17-by-  17 array of points is sufficient for  the  Fourier  rectangle. 
In the  sample  aperture  illuminations  to follow, c = 1.05 a and d = 1.05 b for  the BF 
method. 

The first aperture illumination  to be considered is given by 

This illumination is typical  for  large-aperture antennas. We assume  that  the  aperture 
is circular and thus a = b. For  the  BF method, M = 2 is sufficient  to  satisfy  the i 

error  criterion.  Figure 7 is a  plot of the  relative power l E ( a ,  O)/E(O, 0) l 2  in  decibels I 
1 

as a function of a. The FFT method, the  BF method with M = 2, and the BF method 
with M = 8 are  shown. The  BF method with M = 8 can be considered as  the exact 
evaluation of the scalar diffraction  integral  since  larger  values of M do not  produce 
significant changes. 

We  now consider an aperture  illumination having a quadratic, o r  square-law, 

8 
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c '  

phase function. This  phase function occurs in large-aperture antennas when the  feed 
is defocused  along the axis of symmetry.  For  the BF method, M = 4 is required  to 
satisfy the error  criterion. The aperture illumination is given by 

A(x,  y) = 0.3 + 0.7 - y) 1 
Figure 8 shows the FFT method, the  BF method with M = 4, and the BF method with 
M = 8. Again, the BF method with M = 8  can  be  considered as  the  exact evaluation 
of the  scalar diffraction  integral. 

Finally, we consider an aperture  illumination having a cubic phase function. This 
phase function occurs  in  large-aperture  antennas when the  feed is moved off axis to 
tilt the beam. For  the BF method, M = 4 is required  to  sgtisfy  the  error  criterion. 
The aperture illumination is given by 

Figure 9 shows the  FFT method, the BF method with M = 4, and the BF method with 
M = 8. The latter can  be considered as  the  exact evaluation of the  scalar diffraction 
integral. 

In comparing  the  merits of the two methods, one should consider  the  computer 
storage and computer  time  requirements.  The  FFT  requires an N-by-N array of 
complex  numbers  for input. Thus, 2N real  numbers  must  be  stored. The FFT  uses 
the  same  storage  space  for  calculating  the N-by-N array of complex outputs. For 
N = 128, the  storage  requirement is approximately 32 000 words.  The BF method re- 
quires 2000 words of storage  for  storing  the  table of the function J1(&)/&. For a 
K-by-K array of aperture points,  an  additional storage of 2K2 is required.  For typ- 
ical  values of K, this  storage  requirement  will not exceed 1000 words.  Finally, the 
output points  must  be  stored. The  maximum storage  requirement would occur when a 
fu l l  rectangular  array of  N-by-N output points is desired. Since only the amplitude of 

2 
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the far field is of interest,  the  storage  requirement is N2 words.  The total  storage 
requirement  for  the BF method is 2K + N + 2000 words. For any reasonable  values 
of N and K, the BF method requires less storage  than  the 2N2 words required by 
the  FFT. 

1 

2 2  

In discussing  computer  time  requirements,  there are two major  parts of the com- 
putation to be considered. One part is the  computation of the  aperture  illumination  at 
the  aperture  grid points. For idealized  aperture  illuminations,  such as those consid- 
ered in this  report,  this  computer  time is insignificant. But for illuminations calcu- 
lated  from  feed  horn  patterns,  the computer time  may be  significant. For the two 
methods,  the  computer time is approximately  proportional to  the  number of grid points 
within the  aperture. In the  examples  used  in  this  report, a 16-by-16 array of aperture 
points  was required  for  the  FFT method,  and a 17-by-  17 array was required  for  the 
BF method. It may  be concluded that  the  computer  time  for  calculating  aperture il- 
luminations is comparable for  the two methods. 

The second major  part of the computation is the  calculation of the far field at the 
output points. For an N-by-N array of output points,  the  computer time  requirement 
for  the  FFT method is proportional to N log2N. Since log2N will be either 6, 7, 2 

or 8 in  most  applications, we may conclude that  the  computer  time is approximately 
proportional  to N . For  the BF method, the  computer  time is proportional  to M J, 2 2 

where M is the  upper limit in the double summation for  the  far  field and J is the 
number of output points. 

To determine  the  computer  time  for  calculating  the far  field  at  the output points, 
we use results obtained from  the IBM 360/67 time-sharing  system.  These results may 
not be  the  same  for  another  computer and, therefore, should be  taken only as guide- 
lines. For the FFT method, the  computer  time was 1.2 N milliseconds. For the BF 
method, the  computer  time was 1.6 M J milliseconds. 

2 
2 

In many cases,  the  far  field needs to be known only in the two principal  planes of 
the  pattern. Suppose that N points per plane are required. Then the BF method re- 
quires 2N output points and the  FFT method requires N2 output points. Of course, 
in  the  FFT method, we obtain more  information than we need  because a ful l  rectangular 
array of output points is obtained. We compare  the  computer  time needed for both 
methods for N of 64,  128, and 256, assuming M = 4 for the BF method, in  the fol- 
lowing table: 

10 
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Method Value of N I 

I Computing time, sec I 

For such  cases, it is clear that  the BF method is faster than  the  FFT. 
For some  applications,  the full rectangular  array of output points is required. 

Then N output points are  required  for both methods. For  this  case  the computer 
time  for  the BF method divided by the  computer  time for the  FFT method is 1.3 M . 2 

Clearly,  the  FFT method is faster for  this  case. 

2 

A significant  advantage of the  BF method is the  complete  flexibility  in  choosing 
the  number and location of output points. Recall  that  the  FFT method is restricted  to 
having the  number of output points  equal to the  number of input points  and that  this 
number  must be a  power of 2. The BF method has no such restrictions. Also  short- 
cuts  can  be  taken with the BF method by taking  advantage of symmetries  in  the  pattern. 
For a circularly  symmetric  pattern,  for example, output points are needed only for 
one-half of one principal  plane of the  pattern. 

SUMMARY OF RESULTS 

In computer  programs  used  for  evaluating  the  performance of high-gain antennas, 
efficient  numerical methods for calculating  the  far-field  patterns  must be used  since 
the  majority of computer time and storage  requirements may be attributed to this 
phase of the  program. The numerical method most  frequently  used is the  Fast  Fourier 
Transform  (FFT), which computes  the far  field as the  Fourier  transform of the  field 
distribution  in  the antenna aperture. This report  describes a new numerical method 
that  in many applications is superior  to  the  FFT  in  terms of reducing  computer  time 
and storage  requirements. 

The new method requires less computer  storage  in dl applications. Which  of the 
two methods requires less computer  time depends on the  number and location of the 
far-field points. If the  application requires  far-field points only in  the  principal  planes 
of the  pattern,  the new method is generally  faster. If the application requires a full 
rectangular  array of far-field  points,  the  FFT method is generally faster. A signifi- 

11 



cant advantage of the new method is the  complete  flexibility in choosing the number and 
location of far-field  points. If the  calculation of the field  in the aperture is time con- 
suming,  the number of aperture  grid  points  required  becomes an important  considera- 
tion.  The  number of aperture grid points  required is approximately the same  for  the 
two methods. 

Lewis Research  Center, 
National  Aeronautics and Space  Administration, 

Cleveland, Ohio, May 4, 1976, 
643-60. 
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APPENDIX - EVALUATION OF INTEGRAL 

The following integral is to be evaluated: 

y(x) = b y 1  - (9)" 
a 

The  integration  over y is readily done to obtain 

I = z l a e b x  6 s i n l b  dq]clx 
-a 

Since the  imaginary  part of the integrand of equation (A3) is an odd function of x, the 
imaginary  part of I is zero.  The  trigonometric  part of the  integrand can be ex- 
pressed  as *% 

j6bd1-(x/a)2  -j6bdl-(x/a) 2 
- e  
2 j  

Substituting equation (A4) into (A3), we obtain 

MAking the  substitution 

x = a s i n 8  

d x =  a cos 8 dB 



we obtain. 

(A71 

The  following substitutions a re  made: 

ya sin e + 6b COS e = A sin(e + 

ya sin 8 - 6b cos 8 = A sin(0 + a2) 

where A, al, and a2 are  given by 

A = {(-ya)2 + (6b)2 

al = tan- 1 (;) 6b 

(;) -1 -6b 

The integral I now becomes 

Since I is real and a/j6 is purely  imaginary, the real  parts of the two integrals in 
equation (A13) are  zero.  These two integrals, to be called I1 and 5, are evaluated 
in the  following  equations: 
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I. = 
1 

e jA sin E cos(€ - ui)dE i = 1,2 

Since the real parts of 4 are zero, we obtain 

5 = j cos (T. sin(A sin €)COS E de 
1 

The integrands in equation (A17) are periodic, with period T, so we can  change the 
limits of integration  to  range  from -(1/2)7r to (1/2)7r. The first integrand in equation 
(A17) is odd, and  the  second integrand is even. We therefore have 

Ii = 2j sin ui sin(A sin €)sin E de i = 1,2 (A181 

From  reference 7, we obtain 

4 = j r  sin ai J1(A) i = 1,2 

Returning now to  the evaluation of I, we have 



From equations (Al l )  and (A12), it follows that 

6b sin a1 = 

sin a2 = - 6b 

Using equations  (AlO), (A20), (A21), and (A22), we finally obtain 

r l  1 

I =  L 
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Figure 5. - Extension  of  aperture  function to Fourier  rectangle - BF method. 
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Figure 8. - Far-field  pattern  for  aperture  distribution 2 A(x,y) = 0.3 +0.7 I1 - (x2 +y2)/a21; 
cp(x.y) = (n/2)1(x2 + y2)/a21. 
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Figure 9. - Far-field  pattern  for  aperture  distribution 3 A(x.y) = 0.3 + 0.7 I1  - (x2 + y2)la21; 
cp(x,y) = ( n / ~ ) ~ a ) 3 .  
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